logo
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
use super::{swap_remove_to_first, trivial_hull};
use crate::kernels::{HasKernel, Kernel, Orientation};
use crate::utils::partition_slice;
use crate::{Coordinate, GeoNum, LineString};

// Determines if `p_c` lies on the positive side of the
// segment `p_a` to `p_b`. In other words, whether segment
// `p_a` to `p_c` is a counter-clockwise rotation from the
// segment. We use kernels to ensure this predicate is
// exact.
#[inline]
fn is_ccw<T>(p_a: Coordinate<T>, p_b: Coordinate<T>, p_c: Coordinate<T>) -> bool
where
    T: GeoNum,
{
    let o = <T as HasKernel>::Ker::orient2d(p_a, p_b, p_c);
    o == Orientation::CounterClockwise
}

// Adapted from https://web.archive.org/web/20180409175413/http://www.ahristov.com/tutorial/geometry-games/convex-hull.html
pub fn quick_hull<T>(mut points: &mut [Coordinate<T>]) -> LineString<T>
where
    T: GeoNum,
{
    // can't build a hull from fewer than four points
    if points.len() < 4 {
        return trivial_hull(points, false);
    }
    let mut hull = vec![];

    use crate::utils::least_and_greatest_index;
    let (min, max) = {
        let (min_idx, mut max_idx) = least_and_greatest_index(&points);
        let min = swap_remove_to_first(&mut points, min_idx);

        // Two special cases to consider:
        // (1) max_idx = 0, and got swapped
        if max_idx == 0 {
            max_idx = min_idx;
        }

        // (2) max_idx = min_idx: then any point could be
        // chosen as max. But from case (1), it could now be
        // 0, and we should not decrement it.
        if max_idx > 0 {
            max_idx -= 1;
        }
        let max = swap_remove_to_first(&mut points, max_idx);
        (min, max)
    };

    {
        let (mut points, _) = partition_slice(&mut points, |p| is_ccw(*max, *min, *p));
        hull_set(*max, *min, &mut points, &mut hull);
    }
    hull.push(*max);
    let (mut points, _) = partition_slice(&mut points, |p| is_ccw(*min, *max, *p));
    hull_set(*min, *max, &mut points, &mut hull);
    hull.push(*min);
    // close the polygon
    let mut hull: LineString<_> = hull.into();
    hull.close();
    hull
}

// recursively calculate the convex hull of a subset of points
fn hull_set<T>(
    p_a: Coordinate<T>,
    p_b: Coordinate<T>,
    mut set: &mut [Coordinate<T>],
    hull: &mut Vec<Coordinate<T>>,
) where
    T: GeoNum,
{
    if set.is_empty() {
        return;
    }
    if set.len() == 1 {
        hull.push(set[0]);
        return;
    }

    // Construct orthogonal vector to `p_b` - `p_a` We
    // compute inner product of this with `v` - `p_a` to
    // find the farthest point from the line segment a-b.
    let p_orth = Coordinate {
        y: p_b.x - p_a.x,
        x: p_a.y - p_b.y,
    };

    let furthest_idx = set
        .iter()
        .map(|pt| {
            let p_diff = Coordinate {
                x: pt.x - p_a.x,
                y: pt.y - p_a.y,
            };
            p_orth.x * p_diff.x + p_orth.y * p_diff.y
        })
        .enumerate()
        .max_by(|(_, a), (_, b)| a.partial_cmp(b).unwrap())
        .unwrap()
        .0;

    // move Coordinate at furthest_point from set into hull
    let furthest_point = swap_remove_to_first(&mut set, furthest_idx);
    // points over PB
    {
        let (mut points, _) = partition_slice(set, |p| is_ccw(*furthest_point, p_b, *p));
        hull_set(*furthest_point, p_b, &mut points, hull);
    }
    hull.push(*furthest_point);
    // points over AP
    let (mut points, _) = partition_slice(set, |p| is_ccw(p_a, *furthest_point, *p));
    hull_set(p_a, *furthest_point, &mut points, hull);
}

#[cfg(test)]
mod test {
    use super::*;
    use crate::algorithm::is_convex::IsConvex;

    #[test]
    fn quick_hull_test1() {
        let mut v = vec![
            Coordinate { x: 0.0, y: 0.0 },
            Coordinate { x: 4.0, y: 0.0 },
            Coordinate { x: 4.0, y: 1.0 },
            Coordinate { x: 1.0, y: 1.0 },
            Coordinate { x: 1.0, y: 4.0 },
            Coordinate { x: 0.0, y: 4.0 },
            Coordinate { x: 0.0, y: 0.0 },
        ];
        let res = quick_hull(&mut v);
        assert!(res.is_strictly_ccw_convex());
    }

    #[test]
    fn quick_hull_test2() {
        let mut v = vec![
            Coordinate { x: 0, y: 10 },
            Coordinate { x: 1, y: 1 },
            Coordinate { x: 10, y: 0 },
            Coordinate { x: 1, y: -1 },
            Coordinate { x: 0, y: -10 },
            Coordinate { x: -1, y: -1 },
            Coordinate { x: -10, y: 0 },
            Coordinate { x: -1, y: 1 },
            Coordinate { x: 0, y: 10 },
        ];
        let correct = vec![
            Coordinate { x: 0, y: -10 },
            Coordinate { x: 10, y: 0 },
            Coordinate { x: 0, y: 10 },
            Coordinate { x: -10, y: 0 },
            Coordinate { x: 0, y: -10 },
        ];
        let res = quick_hull(&mut v);
        assert_eq!(res.0, correct);
    }

    #[test]
    // test whether output is ccw
    fn quick_hull_test_ccw() {
        let initial = vec![
            (1.0, 0.0),
            (2.0, 1.0),
            (1.75, 1.1),
            (1.0, 2.0),
            (0.0, 1.0),
            (1.0, 0.0),
        ];
        let mut v: Vec<_> = initial
            .iter()
            .map(|e| Coordinate { x: e.0, y: e.1 })
            .collect();
        let correct = vec![(1.0, 0.0), (2.0, 1.0), (1.0, 2.0), (0.0, 1.0), (1.0, 0.0)];
        let v_correct: Vec<_> = correct
            .iter()
            .map(|e| Coordinate { x: e.0, y: e.1 })
            .collect();
        let res = quick_hull(&mut v);
        assert_eq!(res.0, v_correct);
    }

    #[test]
    fn quick_hull_test_ccw_maintain() {
        // initial input begins at min y, is oriented ccw
        let initial = vec![
            (0., 0.),
            (2., 0.),
            (2.5, 1.75),
            (2.3, 1.7),
            (1.75, 2.5),
            (1.3, 2.),
            (0., 2.),
            (0., 0.),
        ];
        let mut v: Vec<_> = initial
            .iter()
            .map(|e| Coordinate { x: e.0, y: e.1 })
            .collect();
        let res = quick_hull(&mut v);
        assert!(res.is_strictly_ccw_convex());
    }

    #[test]
    fn quick_hull_test_complex() {
        let coords = include!("../test_fixtures/poly1.rs");
        let mut v: Vec<_> = coords
            .iter()
            .map(|e| Coordinate { x: e.0, y: e.1 })
            .collect();
        let correct = include!("../test_fixtures/poly1_hull.rs");
        let v_correct: Vec<_> = correct
            .iter()
            .map(|e| Coordinate { x: e.0, y: e.1 })
            .collect();
        let res = quick_hull(&mut v);
        assert_eq!(res.0, v_correct);
    }

    #[test]
    fn quick_hull_test_complex_2() {
        let coords = include!("../test_fixtures/poly2.rs");
        let mut v: Vec<_> = coords
            .iter()
            .map(|e| Coordinate { x: e.0, y: e.1 })
            .collect();
        let res = quick_hull(&mut v);
        assert!(res.is_strictly_ccw_convex());
    }

    #[test]
    fn quick_hull_test_collinear() {
        // Initial input begins at min x, but not min y
        // There are three points with same x.
        // Output should not contain the middle point.
        let initial = vec![
            (-1., 0.),
            (-1., -1.),
            (-1., 1.),
            (0., 0.),
            (0., -1.),
            (0., 1.),
            (1., 0.),
            (1., -1.),
            (1., 1.),
        ];
        let mut v: Vec<_> = initial
            .iter()
            .map(|e| Coordinate { x: e.0, y: e.1 })
            .collect();
        let res = quick_hull(&mut v);
        assert!(res.is_strictly_ccw_convex());
    }
}