1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
use crate::{CoordFloat, Point, MEAN_EARTH_RADIUS};
use num_traits::FromPrimitive;
pub trait HaversineDestination<T: CoordFloat> {
fn haversine_destination(&self, bearing: T, distance: T) -> Point<T>;
}
impl<T> HaversineDestination<T> for Point<T>
where
T: CoordFloat + FromPrimitive,
{
fn haversine_destination(&self, bearing: T, distance: T) -> Point<T> {
let center_lng = self.x().to_radians();
let center_lat = self.y().to_radians();
let bearing_rad = bearing.to_radians();
let rad = distance / T::from(MEAN_EARTH_RADIUS).unwrap();
let lat =
{ center_lat.sin() * rad.cos() + center_lat.cos() * rad.sin() * bearing_rad.cos() }
.asin();
let lng = { bearing_rad.sin() * rad.sin() * center_lat.cos() }
.atan2(rad.cos() - center_lat.sin() * lat.sin())
+ center_lng;
Point::new(lng.to_degrees(), lat.to_degrees())
}
}
#[cfg(test)]
mod test {
use super::*;
use crate::algorithm::haversine_distance::HaversineDistance;
use num_traits::pow;
#[test]
fn returns_a_new_point() {
let p_1 = Point::<f64>::new(9.177789688110352, 48.776781529534965);
let p_2 = p_1.haversine_destination(45., 10000.);
assert_eq!(p_2, Point::<f64>::new(9.274409949623548, 48.84033274015048));
let distance = p_1.haversine_distance(&p_2);
assert_relative_eq!(distance, 10000., epsilon = 1.0e-6)
}
#[test]
fn direct_and_indirect_destinations_are_close() {
let p_1 = Point::<f64>::new(9.177789688110352, 48.776781529534965);
let p_2 = p_1.haversine_destination(45., 10000.);
let square_edge = { pow(10000., 2) / 2f64 }.sqrt();
let p_3 = p_1.haversine_destination(0., square_edge);
let p_4 = p_3.haversine_destination(90., square_edge);
assert_relative_eq!(p_4, p_2, epsilon = 1.0e-6);
}
}