1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249
use crate::kernels::*;
use crate::{Coordinate, LineString};
/// Predicates to test the convexity of a [ `LineString` ].
/// A closed `LineString` is said to be _convex_ if it
/// encloses a [convex set]. It is said to be _strictly
/// convex_ if in addition, no three consecutive vertices
/// are collinear. It is _collinear_ if all the vertices lie
/// on the same line.
///
/// # Remarks
///
/// - Collinearity does not require that the `LineString`
/// be closed, but the rest of the predicates do.
///
/// - This definition is closely related to the notion
/// of [convexity of polygons][convex set]. In particular, a
/// [`Polygon`](crate::Polygon) is convex, if and only if its `exterior` is
/// convex, and `interiors` is empty.
///
/// - The [`ConvexHull`] algorithm always returns a strictly
/// convex `LineString` unless the input is empty or
/// collinear. The [`graham_hull`] algorithm provides an
/// option to include collinear points, producing a
/// (possibly non-strict) convex `LineString`.
///
/// # Edge Cases
///
/// - the convexity, and collinearity of an empty
/// `LineString` is _unspecified_ and must not be relied
/// upon.
///
/// - A closed `LineString` with at most three coordinates
/// (including the possibly repeated first coordinate) is
/// both convex and collinear. However, the strict convexity
/// is _unspecified_ and must not be relied upon.
///
/// [convex combination]: //en.wikipedia.org/wiki/Convex_combination
/// [convex set]: //en.wikipedia.org/wiki/Convex_set
/// [`ConvexHull`]: crate::algorithm::convex_hull::ConvexHull
/// [`graham_hull`]: crate::algorithm::convex_hull::graham_hull
pub trait IsConvex {
/// Test and get the orientation if the shape is convex.
/// Tests for strict convexity if `allow_collinear`, and
/// only accepts a specific orientation if provided.
///
/// The return value is `None` if either:
///
/// 1. the shape is not convex
///
/// 1. the shape is not strictly convex, and
/// `allow_collinear` is false
///
/// 1. an orientation is specified, and some three
/// consecutive vertices where neither collinear, nor
/// in the specified orientation.
///
/// In all other cases, the return value is the
/// orientation of the shape, or `Orientation::Collinear`
/// if all the vertices are on the same line.
///
/// **Note.** This predicate is not equivalent to
/// `is_collinear` as this requires that the input is
/// closed.
fn convex_orientation(
&self,
allow_collinear: bool,
specific_orientation: Option<Orientation>,
) -> Option<Orientation>;
/// Test if the shape is convex.
fn is_convex(&self) -> bool {
self.convex_orientation(true, None).is_some()
}
/// Test if the shape is convex, and oriented
/// counter-clockwise.
fn is_ccw_convex(&self) -> bool {
self.convex_orientation(true, Some(Orientation::CounterClockwise))
.is_some()
}
/// Test if the shape is convex, and oriented clockwise.
fn is_cw_convex(&self) -> bool {
self.convex_orientation(true, Some(Orientation::Clockwise))
.is_some()
}
/// Test if the shape is strictly convex.
fn is_strictly_convex(&self) -> bool {
self.convex_orientation(false, None).is_some()
}
/// Test if the shape is strictly convex, and oriented
/// counter-clockwise.
fn is_strictly_ccw_convex(&self) -> bool {
self.convex_orientation(false, Some(Orientation::CounterClockwise))
== Some(Orientation::CounterClockwise)
}
/// Test if the shape is strictly convex, and oriented
/// clockwise.
fn is_strictly_cw_convex(&self) -> bool {
self.convex_orientation(false, Some(Orientation::Clockwise)) == Some(Orientation::Clockwise)
}
/// Test if the shape lies on a line.
fn is_collinear(&self) -> bool;
}
impl<T: HasKernel> IsConvex for LineString<T> {
fn convex_orientation(
&self,
allow_collinear: bool,
specific_orientation: Option<Orientation>,
) -> Option<Orientation> {
if !self.is_closed() || self.0.is_empty() {
None
} else {
is_convex_shaped(&self.0[1..], allow_collinear, specific_orientation)
}
}
fn is_collinear(&self) -> bool {
self.0.is_empty()
|| is_convex_shaped(&self.0[1..], true, Some(Orientation::Collinear)).is_some()
}
}
/// A utility that tests convexity of a sequence of
/// coordinates. It verifies that for all `0 <= i < n`, the
/// vertices at positions `i`, `i+1`, `i+2` (mod `n`) have
/// the same orientation, optionally accepting collinear
/// triplets, and expecting a specific orientation. The
/// output is `None` or the only non-collinear orientation,
/// unless everything is collinear.
fn is_convex_shaped<T>(
coords: &[Coordinate<T>],
allow_collinear: bool,
specific_orientation: Option<Orientation>,
) -> Option<Orientation>
where
T: HasKernel,
{
let n = coords.len();
let orientation_at = |i: usize| {
let coord = coords[i];
let next = coords[(i + 1) % n];
let nnext = coords[(i + 2) % n];
(i, T::Ker::orient2d(coord, next, nnext))
};
let find_first_non_collinear = (0..n).map(orientation_at).find_map(|(i, orientation)| {
match orientation {
Orientation::Collinear => {
// If collinear accepted, we skip, otherwise
// stop.
if allow_collinear {
None
} else {
Some((i, orientation))
}
}
_ => Some((i, orientation)),
}
});
let (i, first_non_collinear) = if let Some((i, orientation)) = find_first_non_collinear {
match orientation {
Orientation::Collinear => {
// Only happens if !allow_collinear
assert!(!allow_collinear);
return None;
}
_ => (i, orientation),
}
} else {
// Empty or everything collinear, and allowed.
return Some(Orientation::Collinear);
};
// If a specific orientation is expected, accept only that.
if let Some(req_orientation) = specific_orientation {
if req_orientation != first_non_collinear {
return None;
}
}
// Now we have a fixed orientation expected at the rest
// of the coords. Loop to check everything matches it.
if ((i + 1)..n)
.map(orientation_at)
.find(|&(_, orientation)| match orientation {
Orientation::Collinear => !allow_collinear,
orientation => orientation != first_non_collinear,
})
.is_none()
{
Some(first_non_collinear)
} else {
None
}
}
#[cfg(test)]
mod tests {
use super::*;
use geo_types::line_string;
#[test]
fn test_corner_cases() {
// This is just tested to ensure there is no panic
// due to out-of-index access
let empty: LineString<f64> = line_string!();
assert!(empty.is_collinear());
assert!(!empty.is_convex());
assert!(!empty.is_strictly_ccw_convex());
let one = line_string![(x: 0., y: 0.)];
assert!(one.is_collinear());
assert!(one.is_convex());
assert!(one.is_cw_convex());
assert!(one.is_ccw_convex());
assert!(one.is_strictly_convex());
assert!(!one.is_strictly_ccw_convex());
assert!(!one.is_strictly_cw_convex());
let one_rep = line_string![(x: 0, y: 0), (x: 0, y: 0)];
assert!(one_rep.is_collinear());
assert!(one_rep.is_convex());
assert!(one_rep.is_cw_convex());
assert!(one_rep.is_ccw_convex());
assert!(!one_rep.is_strictly_convex());
assert!(!one_rep.is_strictly_ccw_convex());
assert!(!one_rep.is_strictly_cw_convex());
let mut two = line_string![(x: 0, y: 0), (x: 1, y: 1)];
assert!(two.is_collinear());
assert!(!two.is_convex());
two.close();
assert!(two.is_cw_convex());
assert!(two.is_ccw_convex());
assert!(!two.is_strictly_convex());
assert!(!two.is_strictly_ccw_convex());
assert!(!two.is_strictly_cw_convex());
}
}