1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
use super::{
Dimensions, Direction, EdgeEnd, EdgeEndBundle, EdgeEndKey, GeometryGraph, IntersectionMatrix,
LabeledEdgeEndBundle,
};
use crate::algorithm::coordinate_position::{CoordPos, CoordinatePosition};
use crate::{Coordinate, GeoFloat, GeometryCow};
#[derive(Clone, Debug)]
pub(crate) struct EdgeEndBundleStar<F>
where
F: GeoFloat,
{
edge_map: std::collections::BTreeMap<EdgeEndKey<F>, EdgeEndBundle<F>>,
point_in_area_location: Option<[CoordPos; 2]>,
}
#[derive(Clone, Debug)]
pub(crate) struct LabeledEdgeEndBundleStar<F>
where
F: GeoFloat,
{
edges: Vec<LabeledEdgeEndBundle<F>>,
}
impl<F: GeoFloat> LabeledEdgeEndBundleStar<F> {
pub(crate) fn new(
edges: Vec<LabeledEdgeEndBundle<F>>,
graph_a: &GeometryGraph<F>,
graph_b: &GeometryGraph<F>,
) -> Self {
let mut labeled_bundle_star = Self { edges };
labeled_bundle_star.compute_labeling(graph_a, graph_b);
labeled_bundle_star
}
fn compute_labeling(&mut self, graph_a: &GeometryGraph<F>, graph_b: &GeometryGraph<F>) {
self.propagate_side_labels(0);
self.propagate_side_labels(1);
let mut has_dimensional_collapse_edge = [false, false];
for edge_end in self.edges.iter() {
let label = edge_end.label();
for (geom_index, is_collapsed) in has_dimensional_collapse_edge.iter_mut().enumerate() {
*is_collapsed = label.is_line(geom_index)
&& label.on_position(geom_index) == Some(CoordPos::OnBoundary);
}
}
for edge_end_bundle in &mut self.edges {
let coord = *edge_end_bundle.coordinate();
let label = edge_end_bundle.label_mut();
for (geom_index, is_dimensionally_collapsed) in
has_dimensional_collapse_edge.iter().enumerate()
{
if label.is_any_empty(geom_index) {
let position: CoordPos = if *is_dimensionally_collapsed {
CoordPos::Outside
} else {
let geometry = match geom_index {
0 => graph_a.geometry(),
1 => graph_b.geometry(),
_ => unreachable!("invalid geom_index"),
};
use crate::algorithm::dimensions::HasDimensions;
if geometry.dimensions() == Dimensions::TwoDimensional {
geometry.coordinate_position(&coord)
} else {
CoordPos::Outside
}
};
label.set_all_positions_if_empty(geom_index, position);
}
}
}
debug!("edge_end_bundle_star: {:?}", self);
}
fn propagate_side_labels(&mut self, geom_index: usize) {
let mut start_position = None;
for edge_ends in self.edge_end_bundles_iter() {
let label = edge_ends.label();
if label.is_geom_area(geom_index) {
if let Some(position) = label.position(geom_index, Direction::Left) {
start_position = Some(position);
}
}
}
if start_position.is_none() {
return;
}
let mut current_position = start_position.unwrap();
for edge_ends in self.edge_end_bundles_iter_mut() {
let label = edge_ends.label_mut();
if label.position(geom_index, Direction::On).is_none() {
label.set_position(geom_index, Direction::On, current_position);
}
if label.is_geom_area(geom_index) {
let left_position = label.position(geom_index, Direction::Left);
let right_position = label.position(geom_index, Direction::Right);
if let Some(right_position) = right_position {
debug_assert!(right_position == current_position, "side_location conflict with coordinate: {:?}, right_location: {:?}, current_location: {:?}", edge_ends.coordinate(), right_position, current_position);
assert!(left_position.is_some(), "found single null side");
current_position = left_position.unwrap();
} else {
debug_assert!(label.position(geom_index, Direction::Left).is_none());
label.set_position(geom_index, Direction::Right, current_position);
label.set_position(geom_index, Direction::Left, current_position);
}
}
}
}
fn edge_end_bundles_iter(&self) -> impl Iterator<Item = &LabeledEdgeEndBundle<F>> {
self.edges.iter()
}
fn edge_end_bundles_iter_mut(&mut self) -> impl Iterator<Item = &mut LabeledEdgeEndBundle<F>> {
self.edges.iter_mut()
}
pub fn update_intersection_matrix(&self, intersection_matrix: &mut IntersectionMatrix) {
for edge_end_bundle in self.edge_end_bundles_iter() {
edge_end_bundle.update_intersection_matrix(intersection_matrix);
debug!(
"updated intersection_matrix: {:?} from edge_end_bundle: {:?}",
intersection_matrix, edge_end_bundle
);
}
}
}
impl<F> EdgeEndBundleStar<F>
where
F: GeoFloat,
{
pub(crate) fn new() -> Self {
EdgeEndBundleStar {
edge_map: std::collections::BTreeMap::new(),
point_in_area_location: None,
}
}
pub(crate) fn insert(&mut self, edge_end: EdgeEnd<F>) {
let bundle = self
.edge_map
.entry(edge_end.key().clone())
.or_insert_with(|| EdgeEndBundle::new(*edge_end.coordinate()));
bundle.insert(edge_end);
}
fn edge_end_bundles_iter(&self) -> impl Iterator<Item = &EdgeEndBundle<F>> {
self.edge_map.values()
}
fn edge_end_bundles_iter_mut(&mut self) -> impl Iterator<Item = &mut EdgeEndBundle<F>> {
self.edge_map.values_mut()
}
pub(crate) fn into_labeled(
self,
graph_a: &GeometryGraph<F>,
graph_b: &GeometryGraph<F>,
) -> LabeledEdgeEndBundleStar<F> {
debug!("edge_end_bundle_star: {:?}", self);
let labeled_edges = self
.edge_map
.into_iter()
.map(|(_k, v)| v.into_labeled())
.collect();
LabeledEdgeEndBundleStar::new(labeled_edges, graph_a, graph_b)
}
}