1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285
use core::{marker::PhantomData, ptr::NonNull};
use generic_array::ArrayLength;
use crate::{
sealed::spsc as sealed,
spsc::{MultiCore, Queue},
};
impl<T, N, U, C> Queue<T, N, U, C>
where
N: ArrayLength<T>,
U: sealed::Uxx,
C: sealed::XCore,
{
/// Splits a statically allocated queue into producer and consumer end points
pub fn split<'rb>(&'rb mut self) -> (Producer<'rb, T, N, U, C>, Consumer<'rb, T, N, U, C>) {
(
Producer {
rb: unsafe { NonNull::new_unchecked(self) },
_marker: PhantomData,
},
Consumer {
rb: unsafe { NonNull::new_unchecked(self) },
_marker: PhantomData,
},
)
}
}
/// A queue "consumer"; it can dequeue items from the queue
// NOTE the consumer semantically owns the `head` pointer of the queue
pub struct Consumer<'a, T, N, U = usize, C = MultiCore>
where
N: ArrayLength<T>,
U: sealed::Uxx,
C: sealed::XCore,
{
rb: NonNull<Queue<T, N, U, C>>,
_marker: PhantomData<&'a ()>,
}
unsafe impl<'a, T, N, U, C> Send for Consumer<'a, T, N, U, C>
where
N: ArrayLength<T>,
T: Send,
U: sealed::Uxx,
C: sealed::XCore,
{
}
/// A queue "producer"; it can enqueue items into the queue
// NOTE the producer semantically owns the `tail` pointer of the queue
pub struct Producer<'a, T, N, U = usize, C = MultiCore>
where
N: ArrayLength<T>,
U: sealed::Uxx,
C: sealed::XCore,
{
rb: NonNull<Queue<T, N, U, C>>,
_marker: PhantomData<&'a ()>,
}
unsafe impl<'a, T, N, U, C> Send for Producer<'a, T, N, U, C>
where
N: ArrayLength<T>,
T: Send,
U: sealed::Uxx,
C: sealed::XCore,
{
}
macro_rules! impl_ {
($uxx:ident) => {
impl<'a, T, N, C> Consumer<'a, T, N, $uxx, C>
where
N: ArrayLength<T>,
C: sealed::XCore,
{
/// Returns if there are any items to dequeue. When this returns true, at least the
/// first subsequent dequeue will succeed.
pub fn ready(&self) -> bool {
let head = unsafe { self.rb.as_ref().0.head.load_relaxed() };
let tail = unsafe { self.rb.as_ref().0.tail.load_acquire() }; // ▼
return head != tail;
}
/// Returns the item in the front of the queue without dequeuing, or `None` if the queue is empty.
///
/// # Examples
/// ```
/// use heapless::spsc::Queue;
/// use heapless::consts::*;
///
/// let mut queue: Queue<u8, U235, _> = Queue::u8();
/// let (mut producer, mut consumer) = queue.split();
/// assert_eq!(None, consumer.peek());
/// producer.enqueue(1);
/// assert_eq!(Some(&1), consumer.peek());
/// assert_eq!(Some(1), consumer.dequeue());
/// assert_eq!(None, consumer.peek());
/// ```
pub fn peek(&self) -> Option<&T> {
let head = unsafe { self.rb.as_ref().0.head.load_relaxed() };
let tail = unsafe { self.rb.as_ref().0.tail.load_acquire() };
if head != tail {
Some(unsafe { self._peek(head) })
} else {
None
}
}
/// Returns the item in the front of the queue, or `None` if the queue is empty
pub fn dequeue(&mut self) -> Option<T> {
let head = unsafe { self.rb.as_ref().0.head.load_relaxed() };
let tail = unsafe { self.rb.as_ref().0.tail.load_acquire() }; // ▼
if head != tail {
Some(unsafe { self._dequeue(head) }) // ▲
} else {
None
}
}
/// Returns the item in the front of the queue, without checking if it's empty
///
/// # Unsafety
///
/// If the queue is empty this is equivalent to calling `mem::uninitialized`
pub unsafe fn dequeue_unchecked(&mut self) -> T {
let head = self.rb.as_ref().0.head.load_relaxed();
debug_assert_ne!(head, self.rb.as_ref().0.tail.load_acquire());
self._dequeue(head) // ▲
}
/// Returns the maximum number of elements the queue can hold
pub fn capacity(&self) -> $uxx {
unsafe { self.rb.as_ref().capacity() }
}
/// Returns the number of elements in the queue
///
/// # Note
///
/// This is a conservative estimate. Interrupt during this function
/// might cause that the `Consumer` actually has more than N items available.
pub fn len(&self) -> $uxx {
let head = unsafe { self.rb.as_ref().0.head.load_relaxed() };
let tail = unsafe { self.rb.as_ref().0.tail.load_acquire() };
tail.wrapping_sub(head)
}
unsafe fn _peek(&self, head: $uxx) -> &T {
let rb = self.rb.as_ref();
let cap = rb.capacity();
let item = (rb.0.buffer.as_ptr() as *const T).add(usize::from(head % cap));
&*item
}
unsafe fn _dequeue(&mut self, head: $uxx) -> T {
let rb = self.rb.as_ref();
let cap = rb.capacity();
let item = (rb.0.buffer.as_ptr() as *const T)
.add(usize::from(head % cap))
.read();
rb.0.head.store_release(head.wrapping_add(1)); // ▲
item
}
}
impl<'a, T, N, C> Producer<'a, T, N, $uxx, C>
where
N: ArrayLength<T>,
C: sealed::XCore,
{
/// Returns if there is any space to enqueue a new item. When this returns true, at
/// least the first subsequent enqueue will succeed.
pub fn ready(&self) -> bool {
let cap = unsafe { self.rb.as_ref().capacity() };
let tail = unsafe { self.rb.as_ref().0.tail.load_relaxed() };
// NOTE we could replace this `load_acquire` with a `load_relaxed` and this method
// would be sound on most architectures but that change would result in UB according
// to the C++ memory model, which is what Rust currently uses, so we err on the side
// of caution and stick to `load_acquire`. Check issue google#sanitizers#882 for
// more details.
let head = unsafe { self.rb.as_ref().0.head.load_acquire() };
return head.wrapping_add(cap) != tail;
}
/// Adds an `item` to the end of the queue
///
/// Returns back the `item` if the queue is full
pub fn enqueue(&mut self, item: T) -> Result<(), T> {
let cap = unsafe { self.rb.as_ref().capacity() };
let tail = unsafe { self.rb.as_ref().0.tail.load_relaxed() };
// NOTE we could replace this `load_acquire` with a `load_relaxed` and this method
// would be sound on most architectures but that change would result in UB according
// to the C++ memory model, which is what Rust currently uses, so we err on the side
// of caution and stick to `load_acquire`. Check issue google#sanitizers#882 for
// more details.
let head = unsafe { self.rb.as_ref().0.head.load_acquire() }; // ▼
if tail.wrapping_sub(head) > cap - 1 {
Err(item)
} else {
unsafe { self._enqueue(tail, item) }; // ▲
Ok(())
}
}
/// Returns the maximum number of elements the queue can hold
pub fn capacity(&self) -> $uxx {
unsafe { self.rb.as_ref().capacity() }
}
/// Returns the number of elements in the queue
///
/// # Note
///
/// This is a conservative estimate. Interrupt during this function
/// might cause that the `Producer` actually has more than N items of available space.
pub fn len(&self) -> $uxx {
let head = unsafe { self.rb.as_ref().0.head.load_acquire() };
let tail = unsafe { self.rb.as_ref().0.tail.load_relaxed() };
tail.wrapping_sub(head)
}
/// Adds an `item` to the end of the queue without checking if it's full
///
/// # Unsafety
///
/// If the queue is full this operation will leak a value (T's destructor won't run on
/// the value that got overwritten by `item`), *and* will allow the `dequeue` operation
/// to create a copy of `item`, which could result in `T`'s destructor running on `item`
/// twice.
pub unsafe fn enqueue_unchecked(&mut self, item: T) {
let tail = self.rb.as_ref().0.tail.load_relaxed();
debug_assert_ne!(tail.wrapping_add(1), self.rb.as_ref().0.head.load_acquire());
self._enqueue(tail, item); // ▲
}
unsafe fn _enqueue(&mut self, tail: $uxx, item: T) {
let rb = self.rb.as_mut();
let cap = rb.capacity();
// NOTE(ptr::write) the memory slot that we are about to write to is
// uninitialized. We use `ptr::write` to avoid running `T`'s destructor on the
// uninitialized memory
(rb.0.buffer.as_mut_ptr() as *mut T)
.add(usize::from(tail % cap))
.write(item);
rb.0.tail.store_release(tail.wrapping_add(1)); // ▲
}
}
};
}
impl_!(u8);
impl_!(u16);
impl_!(usize);
#[cfg(test)]
mod tests {
use crate::{consts::*, spsc::Queue};
#[test]
fn sanity() {
let mut rb: Queue<i32, U2> = Queue::new();
let (mut p, mut c) = rb.split();
assert_eq!(c.dequeue(), None);
p.enqueue(0).unwrap();
assert_eq!(c.dequeue(), Some(0));
}
}