1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
use crate::node::ParentNode;
use crate::Envelope;
use crate::RTreeNode;
use crate::RTreeNode::*;
use crate::RTreeObject;
pub struct IntersectionIterator<'a, T, U = T>
where
T: RTreeObject,
U: RTreeObject,
{
todo_list: Vec<(&'a RTreeNode<T>, &'a RTreeNode<U>)>,
}
impl<'a, T, U> IntersectionIterator<'a, T, U>
where
T: RTreeObject,
U: RTreeObject<Envelope = T::Envelope>,
{
pub(crate) fn new(root1: &'a ParentNode<T>, root2: &'a ParentNode<U>) -> Self {
let mut intersections = IntersectionIterator {
todo_list: Vec::new(),
};
intersections.add_intersecting_children(root1, root2);
intersections
}
fn push_if_intersecting(&mut self, node1: &'a RTreeNode<T>, node2: &'a RTreeNode<U>) {
if node1.envelope().intersects(&node2.envelope()) {
self.todo_list.push((node1, node2));
}
}
fn add_intersecting_children(
&mut self,
parent1: &'a ParentNode<T>,
parent2: &'a ParentNode<U>,
) {
if !parent1.envelope().intersects(&parent2.envelope()) {
return;
}
let children1 = parent1
.children()
.iter()
.filter(|c1| c1.envelope().intersects(&parent2.envelope()));
for child1 in children1 {
let children2 = parent2
.children()
.iter()
.filter(|c2| c2.envelope().intersects(&parent1.envelope()));
for child2 in children2 {
self.push_if_intersecting(child1, child2);
}
}
}
}
impl<'a, T, U> Iterator for IntersectionIterator<'a, T, U>
where
T: RTreeObject,
U: RTreeObject<Envelope = T::Envelope>,
{
type Item = (&'a T, &'a U);
fn next(&mut self) -> Option<Self::Item> {
while let Some(next) = self.todo_list.pop() {
match next {
(Leaf(t1), Leaf(t2)) => return Some((&t1, &t2)),
(leaf @ Leaf(_), Parent(p)) => {
p.children()
.iter()
.for_each(|c| self.push_if_intersecting(leaf, c));
}
(Parent(p), leaf @ Leaf(_)) => {
p.children()
.iter()
.for_each(|c| self.push_if_intersecting(c, leaf));
}
(Parent(p1), Parent(p2)) => {
self.add_intersecting_children(p1, p2);
}
}
}
None
}
}
#[cfg(test)]
mod test {
use crate::test_utilities::*;
use crate::{Envelope, RTree, RTreeObject};
#[test]
fn test_intersection_between_trees() {
let rectangles1 = create_random_rectangles(100, SEED_1);
let rectangles2 = create_random_rectangles(42, SEED_2);
let mut intersections_brute_force = Vec::new();
for rectangle1 in &rectangles1 {
for rectangle2 in &rectangles2 {
if rectangle1.envelope().intersects(&rectangle2.envelope()) {
intersections_brute_force.push((rectangle1, rectangle2));
}
}
}
let tree1 = RTree::bulk_load(rectangles1.clone());
let tree2 = RTree::bulk_load(rectangles2.clone());
let mut intersections_from_trees = tree1
.intersection_candidates_with_other_tree(&tree2)
.collect::<Vec<_>>();
intersections_brute_force.sort_by(|a, b| a.partial_cmp(b).unwrap());
intersections_from_trees.sort_by(|a, b| a.partial_cmp(b).unwrap());
assert_eq!(intersections_brute_force, intersections_from_trees);
}
#[test]
fn test_trivial_intersections() {
let points1 = create_random_points(1000, SEED_1);
let points2 = create_random_points(2000, SEED_2);
let tree1 = RTree::bulk_load(points1);
let tree2 = RTree::bulk_load(points2);
assert_eq!(
tree1
.intersection_candidates_with_other_tree(&tree2)
.count(),
0
);
assert_eq!(
tree1
.intersection_candidates_with_other_tree(&tree1)
.count(),
tree1.size()
);
}
}