1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
use crate::algorithm::selection_functions::SelectionFunction;
use crate::node::{ParentNode, RTreeNode};
use crate::object::RTreeObject;
use crate::params::RTreeParams;

/// Default removal strategy to remove elements from an r-tree. A [trait.RemovalFunction]
/// specifies which elements shall be removed.
///
/// The algorithm descends the tree to the leaf level, using the given removal function
/// (see [trait.SelectionFunc]). Then, the removal function defines which leaf node shall be
/// removed. Once the first node is found, the process stops and the element is removed and
/// returned.
///
/// If a tree node becomes empty by the removal, it is also removed from its parent node.
pub fn remove<T, Params, R>(node: &mut ParentNode<T>, removal_function: &R) -> Option<T>
where
    T: RTreeObject,
    Params: RTreeParams,
    R: SelectionFunction<T>,
{
    let mut result = None;
    if removal_function.should_unpack_parent(&node.envelope) {
        let mut removal_index = None;
        for (index, child) in node.children.iter_mut().enumerate() {
            match child {
                RTreeNode::Parent(ref mut data) => {
                    result = remove::<_, Params, _>(data, removal_function);
                    if result.is_some() {
                        if data.children.is_empty() {
                            // Mark child for removal if it has become empty
                            removal_index = Some(index);
                        }
                        break;
                    }
                }
                RTreeNode::Leaf(ref b) => {
                    if removal_function.should_unpack_leaf(b) {
                        // Mark leaf for removal if should be removed
                        removal_index = Some(index);
                        break;
                    }
                }
            }
        }
        // Perform the actual removal outside of the self.children borrow
        if let Some(removal_index) = removal_index {
            let child = node.children.swap_remove(removal_index);
            if result.is_none() {
                if let RTreeNode::Leaf(t) = child {
                    result = Some(t);
                } else {
                    unreachable!("This is a bug.");
                }
            }
        }
    }
    if result.is_some() {
        // Update the envelope, it may have become smaller
        node.envelope = crate::node::envelope_for_children(&node.children);
    }
    result
}

#[cfg(test)]
mod test {
    use crate::point::PointExt;
    use crate::primitives::Line;
    use crate::test_utilities::{create_random_points, create_random_rectangles, SEED_1, SEED_2};
    use crate::RTree;

    #[test]
    fn test_remove_and_insert() {
        const SIZE: usize = 1000;
        let points = create_random_points(SIZE, SEED_1);
        let later_insertions = create_random_points(SIZE, SEED_2);
        let mut tree = RTree::bulk_load(points.clone());
        for (point_to_remove, point_to_add) in points.iter().zip(later_insertions.iter()) {
            assert!(tree.remove_at_point(point_to_remove).is_some());
            tree.insert(*point_to_add);
        }
        assert_eq!(tree.size(), SIZE);
        assert!(points.iter().all(|p| !tree.contains(p)));
        assert!(later_insertions.iter().all(|p| tree.contains(p)));
        for point in &later_insertions {
            assert!(tree.remove_at_point(point).is_some());
        }
        assert_eq!(tree.size(), 0);
    }

    #[test]
    fn test_remove_and_insert_rectangles() {
        const SIZE: usize = 1000;
        let initial_rectangles = create_random_rectangles(SIZE, SEED_1);
        let new_rectangles = create_random_rectangles(SIZE, SEED_2);
        let mut tree = RTree::bulk_load(initial_rectangles.clone());

        for (rectangle_to_remove, rectangle_to_add) in
            initial_rectangles.iter().zip(new_rectangles.iter())
        {
            assert!(tree.remove(rectangle_to_remove).is_some());
            tree.insert(*rectangle_to_add);
        }
        assert_eq!(tree.size(), SIZE);
        assert!(initial_rectangles.iter().all(|p| !tree.contains(p)));
        assert!(new_rectangles.iter().all(|p| tree.contains(p)));
        for rectangle in &new_rectangles {
            assert!(tree.contains(rectangle));
        }
        for rectangle in &initial_rectangles {
            assert!(!tree.contains(rectangle));
        }
        for rectangle in &new_rectangles {
            assert!(tree.remove(rectangle).is_some());
        }
        assert_eq!(tree.size(), 0);
    }

    #[test]
    fn test_remove_at_point() {
        let points = create_random_points(1000, SEED_1);
        let mut tree = RTree::bulk_load(points.clone());
        for point in &points {
            let size_before_removal = tree.size();
            assert!(tree.remove_at_point(point).is_some());
            assert!(tree.remove_at_point(&[1000.0, 1000.0]).is_none());
            assert_eq!(size_before_removal - 1, tree.size());
        }
    }

    #[test]
    fn test_remove() {
        let points = create_random_points(1000, SEED_1);
        let offsets = create_random_points(1000, SEED_2);
        let scaled = offsets.iter().map(|p| p.mul(0.05));
        let edges: Vec<_> = points
            .iter()
            .zip(scaled)
            .map(|(from, offset)| Line::new(*from, from.add(&offset)))
            .collect();
        let mut tree = RTree::bulk_load(edges.clone());
        for edge in &edges {
            let size_before_removal = tree.size();
            assert!(tree.remove(edge).is_some());
            assert!(tree.remove(edge).is_none());
            assert_eq!(size_before_removal - 1, tree.size());
        }
    }
}