Struct geo::Polygon [−][src]
pub struct Polygon<T> where
T: CoordNum, { /* fields omitted */ }
Expand description
A bounded two-dimensional area.
A Polygon
’s outer boundary (exterior ring) is represented by a
LineString
. It may contain zero or more holes (interior rings), also
represented by LineString
s.
A Polygon
can be created with the Polygon::new
constructor or the polygon!
macro.
Semantics
The boundary of the polygon is the union of the boundaries of the exterior and interiors. The interior is all the points inside the polygon (not on the boundary).
The Polygon
structure guarantees that all exterior and interior rings will
be closed, such that the first and last Coordinate
of each ring has
the same value.
Validity
-
The exterior and interior rings must be valid
LinearRing
s (seeLineString
). -
No two rings in the boundary may cross, and may intersect at a
Point
only as a tangent. In other words, the rings must be distinct, and for every pair of common points in two of the rings, there must be a neighborhood (a topological open set) around one that does not contain the other point. -
The closure of the interior of the
Polygon
must equal thePolygon
itself. For instance, the exterior may not contain a spike. -
The interior of the polygon must be a connected point-set. That is, any two distinct points in the interior must admit a curve between these two that lies in the interior.
Refer to section 6.1.11.1 of the OGC-SFA for a formal
definition of validity. Besides the closed LineString
guarantee, the Polygon
structure does not enforce
validity at this time. For example, it is possible to
construct a Polygon
that has:
- fewer than 3 coordinates per
LineString
ring - interior rings that intersect other interior rings
- interior rings that extend beyond the exterior ring
LineString
closing operation
Some APIs on Polygon
result in a closing operation on a LineString
. The
operation is as follows:
If a LineString
’s first and last Coordinate
have different values, a
new Coordinate
will be appended to the LineString
with a value equal to
the first Coordinate
.
Implementations
Create a new Polygon
with the provided exterior LineString
ring and
interior LineString
rings.
Upon calling new
, the exterior and interior LineString
rings will
be closed.
Examples
Creating a Polygon
with no interior rings:
use geo_types::{LineString, Polygon};
let polygon = Polygon::new(
LineString::from(vec![(0., 0.), (1., 1.), (1., 0.), (0., 0.)]),
vec![],
);
Creating a Polygon
with an interior ring:
use geo_types::{LineString, Polygon};
let polygon = Polygon::new(
LineString::from(vec![(0., 0.), (1., 1.), (1., 0.), (0., 0.)]),
vec![LineString::from(vec![
(0.1, 0.1),
(0.9, 0.9),
(0.9, 0.1),
(0.1, 0.1),
])],
);
If the first and last Coordinate
s of the exterior or interior
LineString
s no longer match, those LineString
s will be closed:
use geo_types::{Coordinate, LineString, Polygon};
let mut polygon = Polygon::new(LineString::from(vec![(0., 0.), (1., 1.), (1., 0.)]), vec![]);
assert_eq!(
polygon.exterior(),
&LineString::from(vec![(0., 0.), (1., 1.), (1., 0.), (0., 0.),])
);
Consume the Polygon
, returning the exterior LineString
ring and
a vector of the interior LineString
rings.
Examples
use geo_types::{LineString, Polygon};
let mut polygon = Polygon::new(
LineString::from(vec![(0., 0.), (1., 1.), (1., 0.), (0., 0.)]),
vec![LineString::from(vec![
(0.1, 0.1),
(0.9, 0.9),
(0.9, 0.1),
(0.1, 0.1),
])],
);
let (exterior, interiors) = polygon.into_inner();
assert_eq!(
exterior,
LineString::from(vec![(0., 0.), (1., 1.), (1., 0.), (0., 0.),])
);
assert_eq!(
interiors,
vec![LineString::from(vec![
(0.1, 0.1),
(0.9, 0.9),
(0.9, 0.1),
(0.1, 0.1),
])]
);
Return a reference to the exterior LineString
ring.
Examples
use geo_types::{LineString, Polygon};
let exterior = LineString::from(vec![(0., 0.), (1., 1.), (1., 0.), (0., 0.)]);
let polygon = Polygon::new(exterior.clone(), vec![]);
assert_eq!(polygon.exterior(), &exterior);
Execute the provided closure f
, which is provided with a mutable
reference to the exterior LineString
ring.
After the closure executes, the exterior LineString
will be closed.
Examples
use geo_types::{Coordinate, LineString, Polygon};
let mut polygon = Polygon::new(
LineString::from(vec![(0., 0.), (1., 1.), (1., 0.), (0., 0.)]),
vec![],
);
polygon.exterior_mut(|exterior| {
exterior.0[1] = Coordinate { x: 1., y: 2. };
});
assert_eq!(
polygon.exterior(),
&LineString::from(vec![(0., 0.), (1., 2.), (1., 0.), (0., 0.),])
);
If the first and last Coordinate
s of the exterior LineString
no
longer match, the LineString
will be closed:
use geo_types::{Coordinate, LineString, Polygon};
let mut polygon = Polygon::new(
LineString::from(vec![(0., 0.), (1., 1.), (1., 0.), (0., 0.)]),
vec![],
);
polygon.exterior_mut(|exterior| {
exterior.0[0] = Coordinate { x: 0., y: 1. };
});
assert_eq!(
polygon.exterior(),
&LineString::from(vec![(0., 1.), (1., 1.), (1., 0.), (0., 0.), (0., 1.),])
);
Return a slice of the interior LineString
rings.
Examples
use geo_types::{Coordinate, LineString, Polygon};
let interiors = vec![LineString::from(vec![
(0.1, 0.1),
(0.9, 0.9),
(0.9, 0.1),
(0.1, 0.1),
])];
let polygon = Polygon::new(
LineString::from(vec![(0., 0.), (1., 1.), (1., 0.), (0., 0.)]),
interiors.clone(),
);
assert_eq!(interiors, polygon.interiors());
Execute the provided closure f
, which is provided with a mutable
reference to the interior LineString
rings.
After the closure executes, each of the interior LineString
s will be
closed.
Examples
use geo_types::{Coordinate, LineString, Polygon};
let mut polygon = Polygon::new(
LineString::from(vec![(0., 0.), (1., 1.), (1., 0.), (0., 0.)]),
vec![LineString::from(vec![
(0.1, 0.1),
(0.9, 0.9),
(0.9, 0.1),
(0.1, 0.1),
])],
);
polygon.interiors_mut(|interiors| {
interiors[0].0[1] = Coordinate { x: 0.8, y: 0.8 };
});
assert_eq!(
polygon.interiors(),
&[LineString::from(vec![
(0.1, 0.1),
(0.8, 0.8),
(0.9, 0.1),
(0.1, 0.1),
])]
);
If the first and last Coordinate
s of any interior LineString
no
longer match, those LineString
s will be closed:
use geo_types::{Coordinate, LineString, Polygon};
let mut polygon = Polygon::new(
LineString::from(vec![(0., 0.), (1., 1.), (1., 0.), (0., 0.)]),
vec![LineString::from(vec![
(0.1, 0.1),
(0.9, 0.9),
(0.9, 0.1),
(0.1, 0.1),
])],
);
polygon.interiors_mut(|interiors| {
interiors[0].0[0] = Coordinate { x: 0.1, y: 0.2 };
});
assert_eq!(
polygon.interiors(),
&[LineString::from(vec![
(0.1, 0.2),
(0.9, 0.9),
(0.9, 0.1),
(0.1, 0.1),
(0.1, 0.2),
])]
);
Add an interior ring to the Polygon
.
The new LineString
interior ring will be closed:
Examples
use geo_types::{Coordinate, LineString, Polygon};
let mut polygon = Polygon::new(
LineString::from(vec![(0., 0.), (1., 1.), (1., 0.), (0., 0.)]),
vec![],
);
assert_eq!(polygon.interiors().len(), 0);
polygon.interiors_push(vec![(0.1, 0.1), (0.9, 0.9), (0.9, 0.1)]);
assert_eq!(
polygon.interiors(),
&[LineString::from(vec![
(0.1, 0.1),
(0.9, 0.9),
(0.9, 0.1),
(0.1, 0.1),
])]
);
Trait Implementations
Equality assertion with an absolute limit.
Examples
use geo_types::{Polygon, polygon};
let a: Polygon<f32> = polygon![(x: 0., y: 0.), (x: 5., y: 0.), (x: 7., y: 9.), (x: 0., y: 0.)];
let b: Polygon<f32> = polygon![(x: 0., y: 0.), (x: 5., y: 0.), (x: 7.01, y: 9.), (x: 0., y: 0.)];
approx::assert_abs_diff_eq!(a, b, epsilon=0.1);
approx::assert_abs_diff_ne!(a, b, epsilon=0.001);
type Epsilon = T
type Epsilon = T
Used for specifying relative comparisons.
The default tolerance to use when testing values that are close together. Read more
The inverse of AbsDiffEq::abs_diff_eq
.
Note. The implementation handles polygons whose holes do not all have the same orientation. The sign of the output is the same as that of the exterior shell.
Find the closest point between self
and p
.
type Scalar = T
type Scalar = T
fn calculate_coordinate_position(
&self,
coord: &Coordinate<T>,
is_inside: &mut bool,
boundary_count: &mut usize
)
Return the number of coordinates in the Polygon
.
type Iter = Chain<Copied<Iter<'a, Coordinate<T>>>, Flatten<MapCoordsIter<'a, T, Iter<'a, LineString<T>>, LineString<T>>>>
type ExteriorIter = Copied<Iter<'a, Coordinate<T>>>
type Scalar = T
Iterate over all exterior and (if any) interior coordinates of a geometry. Read more
Iterate over all exterior coordinates of a geometry. Read more
impl<T> EuclideanDistance<T, Line<T>> for Polygon<T> where
T: GeoFloat + FloatConst + Signed + RTreeNum,
impl<T> EuclideanDistance<T, Line<T>> for Polygon<T> where
T: GeoFloat + FloatConst + Signed + RTreeNum,
Returns the distance between two geometries Read more
impl<T> EuclideanDistance<T, LineString<T>> for Polygon<T> where
T: GeoFloat + FloatConst + Signed + RTreeNum,
impl<T> EuclideanDistance<T, LineString<T>> for Polygon<T> where
T: GeoFloat + FloatConst + Signed + RTreeNum,
Polygon to LineString distance
Returns the distance between two geometries Read more
Minimum distance from a Polygon to a Point
Minimum distance from a Point to a Polygon
impl<T> EuclideanDistance<T, Polygon<T>> for Line<T> where
T: GeoFloat + Signed + RTreeNum + FloatConst,
impl<T> EuclideanDistance<T, Polygon<T>> for Line<T> where
T: GeoFloat + Signed + RTreeNum + FloatConst,
Returns the distance between two geometries Read more
impl<T> EuclideanDistance<T, Polygon<T>> for LineString<T> where
T: GeoFloat + FloatConst + Signed + RTreeNum,
impl<T> EuclideanDistance<T, Polygon<T>> for LineString<T> where
T: GeoFloat + FloatConst + Signed + RTreeNum,
LineString to Polygon
Returns the distance between two geometries Read more
impl<T> EuclideanDistance<T, Polygon<T>> for Polygon<T> where
T: GeoFloat + FloatConst + RTreeNum,
impl<T> EuclideanDistance<T, Polygon<T>> for Polygon<T> where
T: GeoFloat + FloatConst + RTreeNum,
This implementation has a “fast path” in cases where both input polygons are convex: it switches to an implementation of the “rotating calipers” method described in Pirzadeh (1999), pp24—30, which is approximately an order of magnitude faster than the standard method.
Some geometries, like a MultiPoint
, can have zero coordinates - we call these empty
. Read more
The dimensions of some geometries are fixed, e.g. a Point always has 0 dimensions. However
for others, the dimensionality depends on the specific geometry instance - for example
typical Rect
s are 2-dimensional, but it’s possible to create degenerate Rect
s which
have either 1 or 0 dimensions. Read more
The dimensions of the Geometry
’s boundary, as used by OGC-SFA. Read more
impl<T> Intersects<Geometry<T>> for Polygon<T> where
Geometry<T>: Intersects<Polygon<T>>,
T: CoordNum,
impl<T> Intersects<Geometry<T>> for Polygon<T> where
Geometry<T>: Intersects<Polygon<T>>,
T: CoordNum,
impl<T> Intersects<GeometryCollection<T>> for Polygon<T> where
GeometryCollection<T>: Intersects<Polygon<T>>,
T: CoordNum,
impl<T> Intersects<GeometryCollection<T>> for Polygon<T> where
GeometryCollection<T>: Intersects<Polygon<T>>,
T: CoordNum,
impl<T> Intersects<LineString<T>> for Polygon<T> where
LineString<T>: Intersects<Polygon<T>>,
T: CoordNum,
impl<T> Intersects<LineString<T>> for Polygon<T> where
LineString<T>: Intersects<Polygon<T>>,
T: CoordNum,
impl<T> Intersects<MultiLineString<T>> for Polygon<T> where
MultiLineString<T>: Intersects<Polygon<T>>,
T: CoordNum,
impl<T> Intersects<MultiLineString<T>> for Polygon<T> where
MultiLineString<T>: Intersects<Polygon<T>>,
T: CoordNum,
impl<T> Intersects<MultiPoint<T>> for Polygon<T> where
MultiPoint<T>: Intersects<Polygon<T>>,
T: CoordNum,
impl<T> Intersects<MultiPoint<T>> for Polygon<T> where
MultiPoint<T>: Intersects<Polygon<T>>,
T: CoordNum,
impl<T> Intersects<MultiPolygon<T>> for Polygon<T> where
MultiPolygon<T>: Intersects<Polygon<T>>,
T: CoordNum,
impl<T> Intersects<MultiPolygon<T>> for Polygon<T> where
MultiPolygon<T>: Intersects<Polygon<T>>,
T: CoordNum,
impl<T> Intersects<Point<T>> for Polygon<T> where
Point<T>: Intersects<Polygon<T>>,
T: CoordNum,
impl<T> Intersects<Point<T>> for Polygon<T> where
Point<T>: Intersects<Polygon<T>>,
T: CoordNum,
impl<T> Intersects<Polygon<T>> for Coordinate<T> where
Polygon<T>: Intersects<Coordinate<T>>,
T: CoordNum,
impl<T> Intersects<Polygon<T>> for Coordinate<T> where
Polygon<T>: Intersects<Coordinate<T>>,
T: CoordNum,
impl<T> Intersects<Triangle<T>> for Polygon<T> where
Triangle<T>: Intersects<Polygon<T>>,
T: CoordNum,
impl<T> Intersects<Triangle<T>> for Polygon<T> where
Triangle<T>: Intersects<Polygon<T>>,
T: CoordNum,
impl<T> RelativeEq<Polygon<T>> for Polygon<T> where
T: AbsDiffEq<T, Epsilon = T> + CoordNum + RelativeEq<T>,
impl<T> RelativeEq<Polygon<T>> for Polygon<T> where
T: AbsDiffEq<T, Epsilon = T> + CoordNum + RelativeEq<T>,
Equality assertion within a relative limit.
Examples
use geo_types::{Polygon, polygon};
let a: Polygon<f32> = polygon![(x: 0., y: 0.), (x: 5., y: 0.), (x: 7., y: 9.), (x: 0., y: 0.)];
let b: Polygon<f32> = polygon![(x: 0., y: 0.), (x: 5., y: 0.), (x: 7.01, y: 9.), (x: 0., y: 0.)];
approx::assert_relative_eq!(a, b, max_relative=0.1);
approx::assert_relative_ne!(a, b, max_relative=0.001);
The default relative tolerance for testing values that are far-apart. Read more
The inverse of RelativeEq::relative_eq
.
Returns the simplified representation of a geometry, using the Ramer–Douglas–Peucker algorithm Read more
Returns the simplified representation of a geometry, using the Visvalingam-Whyatt algorithm Read more
Returns the simplified representation of a geometry, using a topology-preserving variant of the Visvalingam-Whyatt algorithm. Read more
Convert a Geometry enum into its inner type.
Fails if the enum case does not match the type you are trying to convert it to.
Auto Trait Implementations
impl<T> RefUnwindSafe for Polygon<T> where
T: RefUnwindSafe,
impl<T> UnwindSafe for Polygon<T> where
T: UnwindSafe,
Blanket Implementations
Mutably borrows from an owned value. Read more
Rotate a Geometry around an arbitrary point by an angle, given in degrees Read more